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We consider the deformation of two-dimensional drops when immersed in a 
slow viscous corner flow. The problem is formulated as one of analytic function 
theory and simplified by assuming that both the drop and the exterior fluid have 
the same viscosity. An approximate analysis is carried out, in which the con- 
ditions at  the interface are satisfied in an average sense, and this reveals the 
following features of the solution. A drop of given physical properties (volume, 
surface tension and viscosity), when immersed in a corner flow, has no steady 
equilibrium shape if the rate of strain of the applied flow is too large. On the other 
hand, if the rate of strain is small enough for a steady solution to exist, then in 
general there are two possible solutions. These features are confirmed by formu- 
lating the exact problem in terms of a nonlinear integro-differential equation, 
which is solved numerically. 

1. Introduction 
In  1934 Taylor described some experiments in which drops of viscous liquid 

were subjected to a viscous corner flow and a viscous shear flow, a t  low Reynolds 
numbers. Similar experiments were reported by Rumscheidt & Mason (1961), 
and a wide range of interesting phenomena were described, including the existence 
of steady pointed drops, bursting pointed drops and bursting rounded drops. 

In  the experiments a single drop was placed in a viscous bath, and then the 
effects of increasing flow velocity, on both the shape and behaviour of the drop, 
were observed. This procedure was carried out for a variety of fluids, and for the 
corner flow, the observations can be roughly summed up as follows. At small 
straining rates, all the drops are essentially spheroidal in shape, being elongated 
in the direction of the flow ; this elongation increases with increasing rate of strain. 
For drops that are relatively inviscid in comparison with the surrounding fluid 
there is a sudden qualitative change in shape at a critical straining rate, in that 
the ends abruptly become pointed. Further increases in strain merely increase 
the elongation, and these pointed configurations survive up to the maximum rates 
of strain attainable in the apparatus. At higher drop viscosities, comparable with 
that of the exterior fluid, steady pointed shapes are also observed at sufficiently 
large straining rates. However, there is a second critical rate of strain at  which the 
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drops ‘burst’ ; that is, they rapidly increase in length with passing time (unsteady 
flow), at  the same time remaining pointed. When the drop viscosity is very large, 
pointed shapes are never seen. Bursting occurs at  sufficiently high rates of strain, 
but both before and after bursting the ends are always rounded. Bursting and 
points are also observed in the shear flow. 

The bursting phenomenon is of fundamental interest, lying at  the heart, in 
fact, of Taylor’s motivation for his work, namely emulsion formation. Several 
plausible explanations may be conjectured. It could, for example, be a stability 
question; that is, a t  sufficient straining rates it is conceivable that the steady 
shapes become unstable to disturbances that must inevitably exist in a real 
flow. Implicit in this view is the idea that a mathematical solution of the problem 
does exist for some range of straining rates greater than the bursting value, but 
this solution is never realized in practice. A second possibility is that the pheno- 
menon is simply one of non-existence - that is, there is an upper bound on the 
straining rates for which a steady solution exists. A third possibility is that the 
solution has several unconnected branches, the branch that one is on depending 
on the manner in which the experiment is set up. Bursting could then be associ- 
ated with an upper bound for the current branch. Naturally we do not rule out 
the chance that the mathematical description involves a mixture of these three 
possibilities. For example, non-existence may occur beyond some limiting 
straining rate, but before this limit is reached instability may destroy the 
solution. 

In  order to decide conclusively which, if any, of these possibilities is responsible 
for bursting, it is necessary to model, exactly, the flows set up by Taylor, and 
discuss fully the solutions and their stability. This is a formidable problem how- 
ever, the overwhelming difficulty arising from the fact that these flows are 
genuinely three-dimensional. In  the face of this, two simplified models naturally 
suggest themselves: plane flows and axisymmetric flows. It is conceivable that 
an understanding of these will lead to an understanding of the real situation. 
The work of Taylor (1964a)  and Buckmaster (1972, 1973) exploits the simplifica- 
tions of axisymmetric flow (made even simpler by the assumption of a slender 
drop), whereas Richardson (1968) considers plane drops. Plane flows have the 
advantage that the powerful techniques of analytic function theory may be used, 
but there is always the danger that the solutions have features uncharacteristic 
of real flows. In this connexion it is worth while comparing the qualitative 
predictions of plane flows with those of axisymmetric flow (where possible), 
since for shear flows we have no choice but to model them with the former. 

There have been several theoretical attacks on problems of this kind, but only 
thereferences already citeddeal with large deformationsfrom circular or spherical 
shapes, and this appears to be an essential ingredient in generating points or 
bursting. Richardson (1968) examined plane inviscid drops in both corner flows 
and shear flows, and was able to generate exact solutions. None of these solutions 
exhibit points, nor do they provide any evidence of bursting. The latter is in 
agreement with experiment and, indeed, the present authors are of the opinion 
that bursting can only occur, when the applied flow is linear, if the drop vis- 
cosity is finite. The absence of points, on the other hand, is more likely to be a 
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creature of the plane-flow model. Thus, equilibrium for a plane drop with two 
pointed ends is unlikely, since as it thins out the interface curvature decreases. 
Intuitively, we might expect that it is an increasing stress associated with 
increasing curvature that can provide the resistance to deformation associated 
with increasing straining rates. Moreover, as Richardson has pointed out, a 
discontinuity in the interface slope of a plane drop applies a point force to the 
surrounding fluid by virtue of interfacial tension. This force completely domi- 
nates the flow in the neighbourhood of the corner and is quite atypical of the 
pointed drops generated by Taylor, for which the discontinuities are three- 
dimensional points, and not edges. 

Buckmaster (1972, 1973) examined axisymmetric drops in a corner flow, and 
the second of these studies is concerned with viscous drops. By assuming that the 
surface tension and drop viscosity are small, so that the drop is slender, a rational 
analytic description is possible. A central result is that there is no steady solution 
of the Stokes-flow equations if 

K = T/aC(popi)* < 8, 

where T is surface tension, po is the viscosity of the outer fluid, pi is the drop 
viscosity, C is the velocity gradient that characterizes the corner flow and 2 a  is 
the length of the drop. The implications of this for the experiments carried 
out by Taylor are suggestive. For a given pair of fluids (i.e. fixed T, po and pi) 
the drop is increasingly deformed by increasing C. An increase in a characterizes 
this deformation, so that, provided pi is not very small, K will eventually become 
smaller than 8, and a steady state will cease to be viable. It is natural to identify 
this with the onset of bursting, particularly since this criterion predicts that 
inviscid drops will never burst. Of course, a steady analysis can give no clues as 
to the nature of the subsequent unsteady flow. Confidence that we have the right 
criterion for bursting would be increased if it could be shown that, when K < 8, 
there is an unsteady solution corresponding to a perpetually elongating drop. 
Such a solution is described by Buckmaster (1973). 

Several criticisms may be justifiably levelled at the slender-drop analysis. 
From a mathematical point of view, the asymptotic analysis is entirely formal, 
and there are acknowledged difficulties near the ends, for which a resolution is 
only suggested. More significantly, it  is not possible, with such an analysis, to 
follow the deformation from the ball shape at  C = 0 to the point where a steady 
solution does not exist. It is conceivable that the slender-drop solutions corre- 
spond to a physically unattainable branch. 

In  the present paper we examine plane viscous drops in a corner flow, primarily 
by numerical means. We are concerned with following the deformation of the 
drop from the circle a t  zero straining rates to at  least the point of non-existence 
(assuming it exists). Furthermore, we want to continue the response curve 
through this critical point, if possible, in order to establish non-uniqueness (i.e. 
two possible configurationsfor a given straining flow). To the author’s knowledge, 
non-uniqueness in steady slow viscous flow has only once been reported before 
(Buckmaster 1973), so that additional evidence would be welcome. It would 
provide a counter example to any speculation that the uniqueness results of 
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Keller, Rubenfeld & Molyneux (1967) can be extended to free-surface situations, 
for example. 

There are several reasons why we examine a plane drop. The primary one is 
that it leads to a relatively simple problem. But, in addition, we feel that both the 
plane and axisymmetric problems are worth systematically exploring, especially 
if physical reasons can be given for any qualitative features that are revealed. 

It is worth remarking that the phenomena of pointed interfaces and bursting 
can occur in other situations. For example, an uncharged conducting drop placed 
in an electric field abruptly forms pointed ends a t  a critical field strength (Taylor 
196471). In  addition, it is probable that skirt formation on spherical gas caps is a 
bursting phenomenon (Wegener, Sundell & Parlange 1971). Note that the forma- 
tion of skirts is essentially two-dimensional problem, raising the possibility 
that there may be direct applications of plane flow analyses such as the present 
one. 

We start the description in $ 2 by formulating the general problem of a viscous 
drop placed in a corner flow, as one of analytic function theory. Substantial 
simplification is achieved by assuming that the drop and the outer liquid both 
have the same viscosity. There is no reason to believe that this special case is 
atypical. In $ 3 an approximate solution is derived. The drop is assumed to have 
an elliptic shape and the eccentricity is determined by satisfying the interfacial 
conditions in some average sense. In  $4 the problem is reduced to a single non- 
linear integro-differential equation for the drop shape, which is solved numeric- 
ally. Sections 3 and 4 are mutually self-supporting, showing that an approximate 
analysis of this kind can be very accurate and providing evidence that the 
numerical results are correct. Finally, in $5, the results are summarized and 
explained. 

2. Formulation as a problem in analytic function theory 
Consider the situation described by figure 1 in which a drop with viscosity ,ui 

is immersed in a corner flow of a liquid with viscosity p,,. The Reynolds number 
pCa2/p is assumed to be small enough to justify the neglect of inertia terms, so 
that the corner flow can be described by 

u = cx, 2, = -cy, p = p a  (2.1) 

and the presence of the drop disturbs this. The undisturbed flow is not a solution 
of the Navier-Stokes equations, so that our description will not be uniformly 
valid (it breaks down a t  infinity), but this does not interfere with our basic 
aim, which is to calculate the shape of the drop. 

Since the stream function satisfies the biharmonic equation, it can be repre- 
sented in the usual way as 

$(x, Y) = Re [%%) + X ( Z ) l >  ( 2 . 2 )  

so that -v+iu = $(x )+z$ ’ (Z )+X ’ (Z ) ,  (2.3) 
-- - 

where $(z) and ~ ( z )  are analytic functions of the complex variable x = x+iy. 
Richardson (1968) used this approach in his study of inviscid drops (pi = 0) ,  
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FIGURE I.  Drop in corner flow. 

and in particular derived the appropriate interfacial conditions for such drops. 
We shall follow his analysis with appropriate modifications to allow for the effects 
of non-zero ,us. Thus, referring to that paper, the stress balance on the interface 
is 

where T is the surface tension and S refers to the jump across the interface. Upon 
integration (absorbing the constant of integration into $J, this yields 

- -  - _  
gT(dz /ds)  = ,UJ$~- z$A - x;) - z$l -xi) on C. (2.4) 

$,+z$;+x; = $i+z$;+x; on C. (2.5) 

In  addition, the velocity is continuous on the interface, so that 
- -  - -  

Equations (2.4) and (2.5) are correct whether the interface is stationary or not, 
but for a steady situation they are supplemented by the condition 

$ = Re (29 +x) = constant on C. (2.6) 
These equations, together with appropriate conditions on $ and x at infinity 
are sufficient, in principle, to determine $, x and the shape of the interface C. 
In  practice however, they present a formidable problem, so that we shall introduce 
a major simplification, namely 

It does not seem likely that this is atypical of the general situation, so that any 
qualitative features that we determine are of interest. The simplification arises 
because only the normal stress is then discontinuous across the interface. 

, u i = , u o  (=,uu)* (2.7) 
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Equations (2.4) and (2.5) now yield 

Moreover, 

Qo-q5i = -- a’ on C. 
4p ds 

which on multiplication by dzlds and integration (absorbing the constant of 
integration into xi) yields 

T -dz x - x . = - - x -  onC. 
O a 4p as 

Equations (2.8) and (2.9) are completely equivalent to (2.4) and (2.5) and 
have the advantage that, if the shape of the drop is known, explicit solutions for 
Q and x can immediately be written down. Note that we have not yet used the 
condition that for a steady flow the drop interface is a streamline (equation (2.6)). 
Thus (2.8) and (2.9) are valid even if the interface is moving, and could be used, 
for example, to calculate the motion of a drop of initially known shape. 

The required behaviour of q5 and x for large z, consistent with (2.1), is 

$(z)  N - ip ,z /4p,  ~ ( z )  N -+iCz2 as 1x1 -+ 00, 

so that from (2.8) and (2.9) we have, by virtue of the Plemelj formula, 

where k is a real constant.? Thus the problem is to find a drop shape such that 
when q5 and x are calculated from (2.10) they satisfy the condition (2.6) on the 
interface. (The constant in (2.6) is chosen to be zero.) In the next section an 
approximate solution of this problem is obtained. 

3. Approximate solution 
An approximate solution of the problem formulated in $ 2  can be derived by 

supposing that the drop is one of a one-parameter family of shapes, the value of 
the parameter to be determined by satisfying the conditions on the boundary in 
some average sense. An approach of this kind was very successfully taken by Tay- 
lor (19646) in describing the equilibrium configuration of conducting drops in a 
uniform electric field. He assumed that the drop was a prolate spheroid and then 
determined the internal pressure and the eccentricity by (in one calculation) 
satisfying the stress condition a t  the ends and the equator. Numerical calcula- 
tions by Brazier-Smith (1971) show that this gives remarkably accurate results. 
In the present problem we take advantage of the fact that the behaviour of an 
analytic function far from a finite body is related to the average of the function 

7 Like Richardson (1968), for symmetry reasons we omit logarithmic terms. 



Bursting of drops in slow viscous flow 63 1 

over the boundary. Specifically, Cauchy’s integral formula can be used to relate 
the coefficients in the Laurent expansion to certain weighted integrals of the 
function over the boundary. Consequently, if we wish to ensure that two different 
analytic functions are equal, in some average sense, on the boundary, it is appro- 
priate to equate as many of the leading coefficients in their Laurent expansions as 
possible. 

Thus, suppose that the drop can be represented approximately by an ellipse. 
The exterior of the ellipse is related to the exterior of the unit circle in the [plane 
by the mapping 

For the remainder of this section we shall only be concerned with 4, and xo so 
the subscript will be dropped. Writing 

= w([) = A ( [ + B / [ ) .  ( 3 . 1 )  

@(5) = 5w46)), X(Y)  = X ( W ( C ) ) ,  

the tangency condition (2 .6 )  is (with the constant equal to zero) 

The left-hand side of this equation is analytic in J[1 > 1, whereas the right-hand 
side is meromorphic in 161 < 1 ,  with a pole at  the origin. Consequently, the right- 
hand side is the analytic continuation of the left into [[I < 1, so that ( 3 . 2 )  is, 
in fact, valid in 1<1 < 1. Writing C = l/S and taking the complex conjugate yields 

-- 
A ( r + B / r ) @ ( l / ~ ) + X ( l / ? ’ j )  = - A ( l / r + B r ) @ , ( r ) + X ( r )  in 191 > 3 

and comparison with (3 .2)  then shows that the Iatter is valid everywhere. 
Now as 161 -+ co 

imaginary) and we choose the arbitrary constant E in (2.10) so that 

X([) N - $iCA2[2+0(1/[2).  

iPm A 
4P 6 

It follows that, as [ -+ 0, 

- iC A2 
2 <2 +0(C2), @ ( 1 / 0  - -+O(Y), XCl/C) - - 

and this determines the nature of the pole of the right-hand side of (3 .2 ) .  Since the 
function represented by both the left and right is analytic outside the unit circle 
with known behaviour at  infinity, and meromorphic in the interior with a known 
pole at  the origin, it follows that 

Thus, to satisfy the tangency condition, @ and X are related to each other, and 
in particular 

A@-1+AB@-,+XL2 = - ( 3 . 4 )  
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where @-, is the coefficient of c-, in the expansion of @ for large 1c1 (similarly for 

In  addition, (9 and X are determined in terms of the parameters A and B by 
the expressions (2.10).  Thus @-,, and X-, are easily determined by expanding 
[t - w(5)I-l for large 1 { I ,  whence 

X-n) .  

All of these integrals can be expressed as integrals round the unit circle, and then 
substituting into (3 .4 )  yields 

(3 .6 )  
CA 

4np7 = 
2= ~3 cos 4 e  - 2 ~ 2  cos 2e + B so dB [l$B2-2BCOS2e].h ' 

If 2a is the length of the major axis, 2b that of the minor and 
e = I -b /a ,  

we have B = e / ( 2 - e ) ,  A = + ( 2 - e ) .  

Thus (3 .6)  provides a relation between the straining parameter pCa/T and the 
deformation e, which allows the interfacial conditions to be satisfied in an average 
sense. This relation is plotted in figure 2. 

There are two points that we should like to make about figure 2. In the first 
place there is a maximum value ofpCa/T beyond which there is no solution. Since 
this parameter can always be made arbitrarily large in an experiment, by simply 
increasing C, it follows that there is no steady solution for a sufficiently high 
rate of strain (cf. the discussion of slender drops in the introduction). Second, 
pCa/T is a monotone function of e ,  and this has important implications for the 
numerical work of 15 4. 

Although figure 2 is a perfectly correct way of representing our results, it does 
not lend itself to comparison with a realistic experiment. In an experiment we 
should take a drop of fixed volume (area), viscosity and surface tension and 
observe its shape for various values of C. Thus a more appropriate length scale 
than a is one that does not vary during the experiment. If we take as this length 
scale the square root of S,  the drop area, we get the result shown in figure 3 as the 
approximate solution (broken line). For a given value of the parameter pC,/S/T, 
there is not a unique solution for the eccentricity. Rather, for straining rates 
sufficiently small for existence, there are two possible solutions. This non- 
uniqueness, which is intimately related to the question of non-existence, has its 
counterpart in the slender-drop analysis of Buckmaster (1973).  

The procedure for improving the approximate solution described here is, in 
principle, straightforward. Thus a better approximation could be obtained by 
assuming that the drop can be mapped on to the unit circle by the function 
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where now there are two parameters to be determined, B and D. The extra 
degree of freedom enables us to equate more terms in the Laurent expansions. 
However, we do not pursue this line. It is of great interest to determine whether 
or not the non-uniqueness is genuine, or merely a creature of the approximate 
analysis, so that in the next section we describe an exact numerical solution of 
our problem. 

4. Numerical solution 
In this section, the problem formulated in $ 2  is reduced to a single integro- 

differential equation for the drop shape. We follow this with a description of the 
numerical procedure required to solve it. 

The derivation of the governing equation is a straightforward exercise. Sup- 
pose that the drop is described by 

y = +f(x), 1x1 < a. (4.1) 

Equations (2.10) then determine q5 and x in terms of integrals which containf 
and its first derivative. This enables us to write down an integral expression for 
the stream function $. Setting this equal to zero for points in the set 

{(x, +f(x)) 11x1 < a> 

then yields an integro-differential equation for f(x), namely 
+ - 2(x - xo)2P’ + (x - xo) (a + Po) ( 1 - P’2) 4n-p-x0P0 = ax 

ca T s4 [l +F’2]s[(X-xo)2+(EI+F0)2] 

+l 2(x-X0)2P’+(x-X0) ( F o - P ) ( l - P ’ ~ )  + / 2 x  [l+F’2]8[(x-xo)2+(F-Po)2] (1x01 G I ) ,  (4.2) 

where F ( x )  = f(ux),  1x1 6 1 and Fo = P(xo). The problem is, given the parameter 
,uCa/T, to find a non-trivial function F ( z )  which satisfies this equation. The 
parameter was really forced upon us since we do not know a priori the relation 
between a and X. Fortunately, it is the most appropriate parameter for the 
numerical integration, since we can expect a unique dependence of the shape 
thereon. 

The integral equation (4.2), as written, is difficult to approximate numerically 
because of the singularities in P‘ at the ends x = -t 1. To avoid this difficulty and 
at  the same time build in an appropriate distribution of step sizes, we transform to 
elliptic polar co-ordinates 

x(h) = r(h)  cos8(h), P(h)  = r(h)  sin8(h), (4.3) 

tanB(h) = Etanh (0  < h < in-). 
Here e is a parameter with value between zero and one, chosen to yield the 
greatest numerical accuracy. e may be interpreted as the minor to major axis 
ratio of an ellipse. Values close t o  one are appropriate when the drop is only 
slightly different from a circle, but as it gets stretched out with increasing values 
of ,uCa/T, smaller values of E are appropriate. 
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With the transformation (4.3) implied, and making use of the symmetry of the 
problem, (4.2) can be written as 

H(r(h,)) = 0 = 3, x,, Po, 2, P )  - G(x,  F ,  x,, - F,, 2,  I?)],  

(4.4) 
where 

(4.5) 
Here a dot denotes differentiation with respect to h and a subscript zero implies 
evahation of the function at A = A,. 

At h = A, the integrand in (4.4) is indeterminate (removable singularity) and 
is given by 

G(O,FO,O,~, ,~ , ,O)-G(O,FO,O,  -F,,2,,0) = 

We view (4.4) as a nonlinear integral equation for r (h)  in the interval [0,4n], 
where r (0)  = 1. It may be solvednumerically for prescribed values of e andpCa/T 
using an iterative procedure. Thus a uniform gridwith spacing nl2Nis introduced, 
and with an initial guess for r ( jn /2N) ,  j = 1,2,  . . ., N ,  the function H (equation 
(4.4)) is evaluated for A, = j7r/2N,j = 1, . . ., N .  Derivatives of r are calculated by 
approximating r by cubic splines, and Simpson's rule is used to evaluate the 
integrals. Successive iterates for r(jn12N) are then obtained using a linear 
interpolation scheme (Robinson 1966; Mancino 1967). It is important to start 
with a good initial guess for r(jn/2N),  and for small values of pCa/T this can be 
obtained from the approximate analysis of 3 3. Once a solution has been obtained 
for a particular value of pCa/T, this may be extrapolated to obtain the initial 
guess for a slightly larger value of the parameter, and in this way the whole 
range of values can be covered. 

As discussed in $ 3  it  is appropriate to cast the results in terms of a constant- 
area drop. Since the area S is given by 

the parameter 
47r(pC4X/T) = a 4 ~ ( p C a / T )  

can be calculated from the numerical solution, using Simpson's rule. In addition, 
in order to obtain a sequence of pictures of the deformation of a single constant- 
area drop, it is necessary to scale the co-ordinates of the interface (x(h), y(A)) by 
a multiplicative factor l/JS. 
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(c) : (4 

FIGURE 4. Drop shapes. (a )  0 = 2.80, e = 0.44. ( b )  L2 = 4.06, e = 0.71. 
(c) .Q = 4.05, e = 0.79. (d )  L2 = 3-67, e = 0.89. 

5 .  Results and concluding remarks 
Figures 2 and 3, as well as showing the results of the approximate analysis, 

also describe the corresponding numerical results. There is substantially good 
agreement, except for very slender drops. It may be noted that numerical results 
are only shown for values of the abscissa less than about 0.9. This limit cor- 
responds, roughly, to the most slender drop for which the iterative procedure 
converges. 

In  figure 4 we show a representative sample of drop shapes, for different 
values of the parameter 0 = 4mpC,/(S)/T. For small values of 0, the drop is 
shaped like an ellipse. This is predicted by a small perturbation analysis, but the 
correspondence persists to values of Q of order one. However, as the maximum 
value of 0 is approached ( N 4.1) the central portion of the drop flattens, and be- 
yond the maximum (right-hand branch) a portion of the interface becomes con- 
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cave. The numerical results suggest that the appearance of a point of vanishing 
curvature coincides with the maximum, but we have no other evidence for this. 

A question we have not explored is the limiting shape corresponding to a drop 
of vanishing thickness. The reason for this is that, the more slender the drop, the 
more difficult it becomes to achieve convergence of the numerical iteration. Our 
primary concern was to generate solutions at  least a little way beyond the re- 
sponse curve maximum, rather than explore the problem fully. As a consequence, 
no major effort was made to overcome these numerical difficulties. 

The solutions we have obtained have at  least one thing in common with the 
asymptotic solutions described by Buckmaster (1 973) for axisymmetric drops. 
That is, the response curve has a turning point (maximum). Moreover, the 
solutions in the neighbourhood of the maximum are connected, in a physically 
sensible way (the left-hand branch), to the undisturbed state. The implication is, 
that, as L2 is slowly increased from zero, there comes a point (Q N 4.1) when 
something dramatic must happen. Either the flow must become unsteady, or it 
must change in a discontinuous fashion. This can not be solely a creature of our 
plane-flow model, since it is not present in Richardson’s (1968) solutions for an 
inviscid plane drop. Mathematically, the presence of a maximum appears to be 
linked with whether or not the drop is viscous. Since bursting is apparently 
linked with the 5ame fact, we suggest that the maximum coincides with the onset 
of bursting. 

It remains to provide some physical explanation for the bursting phenomenon. 
To this end, we estimate the forces that are acting on the drop. Such estimates are, 
in reality, just guesses, but nevertheless they can be illuminating. What we want 
to do is estimate the forces, in the x direction, acting on one half of the drop 
(figure 5 ) .  These estimates are based, arbitrarily, on the assumption that the 
pressure just to the left of the point 0 (inside the drop) is zero. There are several 
contributions to the net force, but they can be divided into two groups: those 
that are proportional to T ,  the surface tension, and those that are proportional to 
C, the applied rate of strain. Surface tension tends to preserve the drop, that is, 
resists the deformation, whereas the straining tends to pull the drop apart. 
Consequently, the net surface tension force acts to the left, whereas the net 
straining force acts to the right, and for equilibrium these two forces must 
balance. 

Suppose, to start off with, that the drop is inviscid. Then the velocity gradient 
in the outer flow is characterized by C, and the normal stress acting on the inter- 
face contains terms which are of order Tlb and y,C. The corresponding horizontal 
force has components O(T) and O(y,Cb). In  addition there is a force 2T acting to 
the left, so that equilibrium is apparently a result of a balance of the form 

T - poCb. 

Such a balance is always possible, no matter how large C may be, since the drop 
is always free to deform so that b is appropriately small. This must be why in- 
viscid drops do not burst. 

The situation is a little more complicated when the drop viscosity is finite. 
However, we can readily estimate the pressure inside the drop. The interior flow 
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FIGURE 5. Force balance. 

consists essentially of four eddies and u is O(Ca) for these eddies. It follows that 
a2ulay2 is of order Ca/b2, so that the pressure is O[pi(Ca2/b2)] and this correeponds 
to a force of order pi(Ca2/b). A similar estimate is valid for the net shear force 
acting on the interface. This suggests that equilibrium is a result of a balance of 
the form 

T - poCb +pi(Ca2/b).t 

True, additional terms may plausibly be advanced for inclusion in the right side 
of this balance, but the crucial point is that there are disruptive forces that 
decrease with decreasing b and disruptive forces that increase with decreasing b. 
Presumably, for moderate deformations, the former forces dominate and an in- 
crease in C may be compensated by a decrease in b. However, because of the 
steadily growing importance of the second kind of term as b decreases, there is 
clearly a limit to this process, and eventually no additional compensation will be 
possible. Bursting must then occur. Furthermore, since bursting coincides with 
the emergence, in a dominant role, of disruptive forces that increase as b de- 
creases, it can be anticipated that the manifestation of bursting is a drop of 
ever-increasing length. This is consistent with experiment and also with the 
unsteady slender-drop analysis, which predicts, ultimately, exponential 
growth in the length. 

The non-uniqueness revealed by our results is likely to be of mathematical 
interest only. The reason for this is that, intuitively, we would expect the right- 

-f Such a balance is also appropriate for axisymmetric drops, and it may be checked with 
what is known about slender drops. Suppose that b/a is of order E ,  where E < 1 ; then all three 
terms contribute to the balance provided that T/,u,Ca is O ( E )  a;nd,ui/,uo is O(@). These are 
precisely the orders of magnitude needed for the slender-drop analysis. 
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hand solution branch to be unstable. After all, it corresponds to an increasing 
deformation arising out of a decreasing rate of strain. This intuitive feeling is 
grounded on the following argument. The solution branch lying to the left of the 
maximum (figure 3) is characterized by a decrease in the disruptive force with 
decreasing values of bla (C fixed) ; this is why an increase in C corresponds to a de- 
crease in b/a for equilibrium. On the other hand, the right-hand branch is charac- 
terized by an increase in the disruptive force with decreasing b/a (C fixed); so 
that in this case a decrease in C corresponds to EL decrease in b/a for equilibrium. 
Now stability requires that, for fixed C, a deformation of the drop gives rise to  
a restoring force. But if the deformed drop is thinner than the equilibrium 
shape, say, then on the right-hand branch there is an increase in the disruptive 
force which will increase the deformation. For this reason, the right-hand branch 
will never be realized in practice. 

Thanks are due to John Rinzel for helpful discussions on the numerical aspects 
of this work, which was performed at  the AEC Computing Centre of the Courant 
Institute of Mathematical Sciences. 
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